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ABSTRACT

A preprototype Sabatier CO Reduction Subsystem was successfully
designed, fabricated and tisted. The lightweight, quick starting

minutes) reactor utilizes a highly active and physically
! ­ cable methanation catalyst composed of ruthenium on alumina.
The use of this improved catalyst developed and fabricated by
Hamilton Standard permits a single straight through plug flow
design with an average lean component H /CO conversion efficiency
of over 99% over a range of H /CO molai ra Los of 1.8 to 5 while
operating with flows equivalent t8 a crew size of one person
steadystate to 3 persons cyclical (equivalent to 5 persons steady-
state). The reactor requir-is no heater operation after start-up
even during simulated 55 minute lightside/39 minute darkside
orbital operation over the above ranga of molar ratios and crew
loadings.

Subsystem performance was proven by parametric testing and
endurance testing over a wide range of crew sizes and metabolic
loadings. The subsystem's operation and performance i.s con-
trolled by a microprocessor and displayed on a nineteen inch
multi-colored cathode ray tube.
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This report has been prepared by the Hamilton Standard Division
of United Technologies Corporation for the National Aeronautics
and Space Administration's Lyndon B. Johnson Space Center in
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Appreciation is expressed to the NASA Technical Monitor, Mr.
Robert J. Cusick of the NASA, Johnson Space Center, for his
guidance and advice.
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SUMMARY

A development program of a Preprototype Sabatier CO Reduction
Subsystem was successfully completed at Hamilton Standard. The
subsystem converts hydrogen and carbon dioxide to water and meth-
ane with an average demonstrated lean component efficiency of over
998 for a range of H /CO molar ratios of 1.8 to 5.0 for a crew
size range of one peison 2steadystate to 3 persons cyclical opera-
ting with a simulated 55 minute light side/39 minute dark side
orbital operation. The reactor starts up in less than five min-
utes, requires no heater operation after start-up and requires no
active controls. Over 700 . hours of on-line reactor test time over
a wide range of operating conditions were accomplished during this
program.

The primary feature of the reactor is the high activity catalyst
developed and fabricated by Hamilton Standard and designated as
UASC-151G. This catalyst, ruthenium on a 14-18 mesh granular
alumina substrate, permitted a simple straight-through plug flow
reactor design without complicated heat exchangers.

The subsystem was successfully integrated with a microprocessor
based controller which permitted complete automatic control and a
CRT display which provided a colored display of subsystem flow and
key operating and performance parameters. All possible control
and emergency shutdown provisions were demonstrated.

The test data obtained during this program was examined and suc-
cessfully used as a basis for correlation of a Sabatier Thermal
Computer Model. Steadystate conversion efficiencies agreement
with test data were within 0.18 for most test cases.

1
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INTRODUCTION

Future extended mission manned spacecrafts will require regenera-
tive subsystems to reduce the amount of expendables required
for resupply. One of the most promising methods is to catalyti-
cally convert carbon dioxide and hydrogen in a Sabatier reactor
to water and methane. The water would be used for crew consump-
tion or electrolyzed to produce oxygen. The methane would be
dumped to space.

A program to develop a preprototype Sabatier subsystem was under-
taken by Hamilton Standard to demonstrate the performance and
life characteristics of an efficient (>998), simple lightweight
design. This program is an outgrowth of Hamilton Standard's six
previous Sabatier programs which included the Space Station
Prototype (SSP) Sabatier program. Compared to the 988 efficient
SSP reactor, the preprototype subsystem developed in this program
is 1/5 the weiqht, 2/3 the size, uses 1/4 the catalyst, starts up
in 1/20 the time and requires no heater operation after start-up.
Operation of the subsystem is completely automatic by utilizing a
microprocessor based controller.

Program Objectit;2

The basic objective of this program was to develop a Sabatier
CO Reduction Subsystem to be integrated with other individual
technologies in the area of regenerative life support and eval-
uated as a part of a Regenerative Life Support Evaluation (RLSE)
program at the NASA/JSC.

Program Duration

This final report encompasses all work performed during the
period of April 1978 through June 1980.

The calculations in this report were made in US customary units
and converted to S1 metric units.
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CONCLUSIONS

The following conclusions were reached as a result of this program
activity:

1. The preprototype Sabatier subsystem successfully completed
the development program requirements.

2. The reactor starts up in less than five minutes under all
design conditions.

3. The catalytic Sabatier reaction is inherently self-limiting
to a temperature of 593°C (11000F).

4. Analytical computer techniques were shown to be accurate in
predicting performance.

5. Once started, the reactor requires no active cooling or
he , ting operation during a 55 minute lightside, 39 minute
dackside orbital mission.

6. The subsystem was tested for a total of 720 hours with no
degradation in performance. In fact performance improved.

7. The inlet dew point reactant from essentially dry to 21°C
(70°F) and supply pressure variation from 1.2 to 1.34 atm
(17.7 to 19.7 psia) had no detectable effect on the subsystem
performance.

8. The preprototype design is directly applicable to a prototype
system.

9. The controller and display, which is common to the TIMES (1)
subsystem, requires no adjustments other than switching
leads from one subsystem to another to provide complete
automatic control with a display which illustrates flow
paths and significant performance parameters.

10. The reactor lean component conversion is essentially over
99% efficient :.or H 2/CO2 molar ratios in the range of 1.8 to
5.0.

11. The subsystem was operated successfully with 5% air (18
oxygen) mixed with the inlet gases. No adverse effects on
the catalyst bed resulted as evidenced by subsequent base-
line testing.

12. The reactor with adequate cooling can efficiently handle
reactant flows equivalent to a crew size of up to 30 persons.

(1) Reference NASA Contract No. NAS9-15471

3
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RECOMMENDATIONS

The following recommendations are a result of successful comple-
tion of this program.

1. Testing of an integrated system consisting of an elec-
trolysis unit, a carbon dioxide concentrator and a Sabatier
subsystem should be demonstrated to verify total air
revitalization system operation and performance.

2. Since the reactor is capable, with adequate cooling, to
handle reactant flows equivalent to a crew size of 30
persons, it is recommended that parametric testing be
conducted to define the cooling required to achieve this
increased capacity, the resultant reactor efficiencies,
and the performance range with fixed cooling flows.

3. A prototype flight subsystem should be fabricated in
order to demonstrate performance compliance on a simulated
space mission and to be available for a possible flight
evaluation.

4. if it is desired to operate the subsystem at reactant
inlet pressures less than 1.2 atm (3 psig), it is recom-
mended that the possibility of redesign of the water
collection section be investigated.

5. In order to operate the Sabatier and TIMES subsystem
concurrently it is recommended that an additional control-
ler and display be fabricated or the controller capacity
be increased to permit monitoring or operation of both
systems concurrently using the same display and keyboard.

4
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RESULTS

This Preprototype Sabatier Carbon Dioxide Reduction Subsystem
Program resulted in the design fabrication, extensive testing and
delivery to the NASA/JSC of a preprototype Sabatier Subsystem.

The preprototype Sabatier subsystem is shown schematically in
Figure 1. Figure 2 is a photograph of the front and rear view of
the subsystem package assembly. Figure 3 is a photograph of the
Sabatier controller driver box assembly. Figure 4 shows the
Sabatier subassembly integrated with the "common" TIMES control-
ler. Figure 5 shows the "common" TIMES display and keyboard
which is used to operate and monitor the Sabatier subsystem.

The subsystem was successfully integrated with t .e controller and
display/keyboard from the TIMES program. Either subsystem, TIMES
or Sabatier, can be operated by connecting the electrical leads
from the subsystem and driver box of the subsystem to be operated
to the controller. The electrical leads are common from the
controller to the 19 inch, six color display and keyboard.

Over 700 hours of test time including a 120 hour continuous
operation test run was accumulated during the development test
program on the subsystem	 Reactor stea4iystate
performance was above 998 for all but two cases at a molar ratio
of 4.0. The conversion efficiencies were calculated from gas
chromatograph readings of outlet gas composition, and from f1cw-
meter measurements. Table 1 shows the resultant performance
data. An off design 10 person case at a molar ratio of 2.6 with
the same cooling flow had a conversion effectiveness of 97.18.

Cyclic operation of the subsystem to simulate a 55 minute on, 39
minute off orbital duty cycle also demonstrated an average
conversion efficiency of 99 %. Performance data obtained during
this operation is shown in Table 2. As can be noted, subsequent
testing after a catalyst treatment to remove additional residual
chlorides resulted in improved performance for the cases rerun.
During all these tests cooling flow was maintained at all times
and no heater operation was required to initiate the reaction.

The effect of variation in total gas reactant inlet supply
pressure of 1.2 atm to 1.34 atm (17.7 to 19.7 Asia) showed that
reactor performance is negligibly affected ( < 0.18). The effect
of reactant gas dewpoint from a dry condition to a dewpoint of
21.1 °C (70°F) also showed that the hydrogen conversion efficiency
is within 0.18.

5
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FIGURE 1

PREPROTOTYPE SABATIER SUBSYSTEM SCHEMATIC
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FIGURE 2
PREPROTOTYPE SABATIER PACKAGE ASSEMBLY
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FIGURE 3
SABATIER DRIVER BOX
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FIGURE 4
SABATIER PACKAGE ASSEMBLY WITH DRIVER BOX AND CONTROLLER
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FIGURE 5
DISPLAY AND KEYBOARD
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TABLE 1

Preprototype Sabatier Subsystem Performance Lean Component
Conversion Efficiency During Steadystate Testing

CO 2 Flow

H 2/Co 2 Molar Ratio

1.8 2.6 3.5 4.0 5.0

1 Man Continuous 99.8 99.8 99.6 99.1 100

1 Man Cyclic 99.7 99.7 99.2 98.2 100

2 Man Cyclic ---- 99.7 ---- ---- ----

3 Man Continuous 99.3 99.6 99.3 99.0 100

3 Man Cyclic: 99.4 99.6 99.3 98.4 100

10 Man Continuous ---- 97.2 ---- ---- ----
(off design)

11
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TABLE 2

Preprototype Sabatier Subsystem Performance
Average Lean Component Conversion Efficiency During Cyclic Testing

(55 Minutes On - 39 Minutes Off)

CO 2 Flow

H 2/CO2 Molar Ratio

1.8 2.6 3.5 4.0 5.0

1 Man 99.6 99.6 99.4 98.6 100

2 Man ---- 99.6 ---- ---- ----

3 Man 99.6 98 . 8 98.1 97.4 100
(99.4) (98.8)

- Test results after completion of test
program and catalyst treatment

12
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Test results showed that for molar ratios above 4.06 no carbon
dioxide was detected for the 3-man cyclic flow test condition.
As a result, it appears that 1008 conversion of the CO 2 lean
component occurs at above a molar ratio of about 4.1.

A test conducted with 5.18 air (18 oxygen) mixed in with the
inlet reactants showed no catalyst damage as a result of oxygen
exposure.

During all start-up operations, the reaction was started in five
minutes or less. Water production rates were usually <2.58 of
the calculated value and water quality quickly improved during
testing to a pH of 4.5-6.0, chlorides to bearly detectable by the
sensitive silver nitrate test and water conductivity to 10-20
Al mhos.

13
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DISCUSSION

The NASA Statement of Work (SOW) defined the major tasks for this
program.	 The corresponding Hamilton Standard Work Breakdown
Structure (WBS) and the detailed presentation of this report
section is presented below:

`	 Tasks	 SOW Paragraph WBS No.

Subsystem Design 3.2.1 1.0

Subsystem Fabrication 3.:.? 2.0

Subsystem Testing 3.2.3 3.0

Subsystem Delivery 3.2.4 2.0, 3.0

Coordination with RLSE 3.2.5 4.0

Do .umentation 4.6 5.0

Support Requirements 5.0 2.0

Quality Assurance 6.0 2.0

Reliability 7.0 3.0

Safety 8.0 1.0, 3.0

14
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SUBSYSTEM DESIGN

The Sabatier subsystem schematic is shown in Figure 1. The carbon
dioxide and hydrogen mixture enters the subsystem through a char-
coal filter which protects the reactor from trace amounts of
contaminant carryover from the upstream electrochemical carbon
dioxide concentrator or the electrolysis subsystem. The mixture

•	 then passes to the reactor where it is converted to water vapor
and methane. The water vapor, methane and excess reactant (either
CO or H ) then flow to the air cooled condenser/separator, where
thi watei vapor is condensed, separated from the gas stream and
pumped out. The gases (methane and excess reactant and uncon-
densed water vapor) are then dumped overboard to space vacuum
through a pressure regulator which also serves to regulate CO
and H supply pressure. A bypass function for CO and H is 2
provided for emergency shutdown and to permit maiRtenanci on the
Sabatier subsystem without interruption of the CO 2 Removal and
O Generation processes. The water is pumped out of the water
s^parator by the pressure differential between the reactant pres-
sure and a spring loaded accumulator which maintains a constant
pressure drop across the porous plate separator. A positive
displacement pump empties the accumulator when full. A fixed air
cooling flow is supplied to the Sabatier Reactor and the conden-
ser/separator by the fan. A controller is provided to control
system operation, to monitor the instrumentation, provide status
information to the display, activate bypass operating modes in
response to out of tolerance conditions, provide warnings and
instructions to the test operator. For all operating conditions
and modes other than failure modes, the controller is not required
to drive any thermal controls because the Sabatier Reactor requires
no cooling modulation or heater operation (except at start-up) to
meet the full range of performance requirements. The subsystem
functions, capabilities, interface definition, schematic and
operation are consistent with the RLSE system requirements.

The heart of the subsystem includes the reactor, the water con-
denser/separator, the accumulator and the water pump. These
items, as further described in later paragraphs of this section,
were developed on this program to the standards of space flight
hardware, and will not require major modifications for flight
use. The balance of the subsystem components are classified as
ancillary equipment. High quality commercial items were employed
for the ancillary items, with modifications as necessary to achieve
the high quality and functional cal)ahilities required of the pre-
prototype unit.

The pump delivers water to the water management system at 2 atm
(30 psia) which is the upper pressure limit defined by RLSE. The
preprototype unit has its own cooling fan, however, the air cooling
jacket at the reactor is designed to operate at low flow with the
pressure drop available from normal Spacelab rack cooling air.

15
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To limit touch temperature to 45°C (113°F) the front end of the
reactor is insulated along the first 12.7 cm (5.0 inches) of length
with min K type insulation. This insulation also retains more
than adequate heat during the off period of cyclic operation to
eliminate need for heater operation.

The remainder of the reactor has two air cooling jackets that
direct flow air axially from the reactant exit end of the reactor
toward the inlet end. Since jacket temperature can be quite
high, an outer shield is used to limit temperature of exposed
surfaces to 4S°C (1130F).

The Sabatier reaction is self-limiting (a reverse endothermic
reaction takes place) at about 593°C (1100 0 F). Therefore, there
is no danger of the reactor overheating itself to failure under
any load or molar flow ratio. For control and normal performance
monitoring, a single thermocouple in the front end of the reactor
bed is used. For preprototype performance analysis, the reactor
was instrumented with 8 thermocouples running down the center of
the bed and 3 thermocouples along the wall of the bed. Since the
reactor radius is only 0.3 cm (0.72 in) centerline thermocouples
and wall thermocouples reading were sufficient to map the temper-
ature gradient. The reactor is sized to convert more than 998 of
the lean reactant over a CO2 flow range of from 0.91 kg/day (2.0
lb/clay) at cyclic and continuous operation to 3.6 kg/day (7.9 avg
lbs/day) at cyclic and continuous operation over a H2/CO2 molar
ratio of from 1.8 to 5.0. This represents the maximum flow range
considering a one to three-man crew and cyclic operation matched
to a 94 minute orbit with 55 minute light side operation. The
minimum flow is for one man, minimum metabolic, continuous opera-
tion and the maximum flow is for three men maximum metabolic
cyclic operation.

The subsystem controls for normal operation are only the limit
ranges in the water accumulator. The `lectric heater is used
for startup and is turned on automacically when the subsystem is
placed in the standby or process mode if the reactor temperature
is below 177°C (350 0 F). The cooling air flow remains on at all
times at a fixed flow condition during all operating modes.
Since the reaction itself is self-limiting at 593°C (1100 0 F), all
components are capable of operating while the reactor is at this
condition. The Sabatier system can also withstand vacuum, or
pressures far exceeding those that could be produced by the WVE
or EDC. Although the reactor subsystem itself is inherently pro-
tected by design, there are some failures which could effect the
interfacing subsystems. A controller and data processing unit is
provided to detect such failures and take the necessary protec-
tive action. The control unit includes a multicolor display of
subsystem flow, performance status and water production rate.

16
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The Sabatier subsystem is not dependent on gravity and can be
operated in any attitude in one G. The only components having
more than a single fluid phase present are he reactor and the
separator/condenser. Both of these component designs have been
demonstrated at + 1 G showing that capillary forces control the
liquid gas interrace.

General Design Philosophy

The design of the Sabatier CO Reduction Subsystem was based on
an extensive background of bosh experimental and analytical data
with the actual catalyst used in the preprototype unit. One
thousand hours of operating time has now been accumulated on
this catalyst material. The subsystem is designed to meet the
requirements specified in Table 3. These include the NASA work
statement, RLSE design specifications, and other requirements
necessary to ensure that the components comprising the heart of
the subsystem are of flight design. The main feature of the
concept is simplicity of loth design and control. This was
obtained by the use of a :iamilton Standard developed catalyst
which permited operation over a wide range of temperature, molar
ratios and loads with no active control at high efficiency
(99%+).

Due to the high activity catalyst used, the heat generated in a
given volume is larger than its heat loss and the reaction is
self-sustaining. As a result, the reactor "ignites" at under
177°C (350 0 F). Since the higher activity catalyst allows use of
a smaller bed there is less heat loss and less thermal mass to
heat and the reactor starts within five minutes.

The ability of the catalyst to operate effectively at lower
temperatures allows reactor operation over a large range at
conditions without active temperature control. Cooling flow is
determined by performance at the maximum load conditions and
remains constant. Although reactor temperatures are lower at low
loads, substantial temperature margin for a self-sustaining
reaction still exists. Electric heater or modulation of cooling
flow are unnecessary even at minimum load conditions and intermit-
tent cyclic operation, thus saving power, increasing the intrinsic
reliability of the system, reducing weight and cost, and reducing
the important parameter of total equivalent weight.

Two temperature measurements are sufficient to indicate reactor
performance status and provide overtemperature protection.
Although eleven thermocouples are provided in the preprototype to
map the reactor performance, flight hardware systems will require
only these two temperature measurements to monitor the health of
the subsystem.

17
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TABLE 3

DESIGN SPECIFICATION

CO2 FLAW RATE

NOMINAL

MINIMUM

MAXIMUM

H2/CO2 MOLAR RATIO

MINIMUM

MAXIMUM

REACTOR LEAN COMPONENT EFFICIENCY

REACTANT SUPPLY PRESSURE

REACTANT SUPPLY TEMPERATURE

REACTANT DEW POINT

TOUCH TEMPERATURE MAXIMUM

WATER DELIVERY PRESSURE

START-UP TIME MAXIMUM

GRAVITY

SUBSYSTEM DUTY CYCLE

3.0 kg/day (6.6 lb/day)

0.9 kg/day (.0 lb/day)

3.6 kg/day (7.92 lb/day)

1.8	 1.8

5.0	 5.0

998	 998

1.4 ATM*	 (5 PSIG*)

18-24*C	 (65-75°F)

SATURATED	 SATURATED

45°C	 (113°F)

2 ATM	 (30 PSIA)

5 MIN	 5 MIN

0 TO + 1G	 0 TO + 1G

CONTINUOUS OR CYCLIC

* LATER REVISED TO 1.24 (3.5 PSIG)
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Subsystem Analysis

Substantial analysis was conducted on the performance and opera-
tion of the Sabatier Subsystem and its subelements. in the case
of all the active subelements, the analysis was verified by test
data. In the computerized areas, the models were thoroughly
verified by test data, at conditions required by the contract.
Tho analysis techniques and comput^.^ programs were revised upon
completion of the testing to refler_ ­ the actual performance
obtained.

Maximum Reactor Temperature

The Sabatier reactor process is characterized by an exothermic
gas phase reaction, catalyzed by a supported metal catalyst.

The maximum theoretical temperature which can be achieved in the
reactor without external heat input was calculated by applying a
successive apF%r.oxiraation procedure to find the simultaneous
solution of	 standard equations of chemical equilibrium,
conservation c: Eaass and conservation of energy.

This calculat e' temperature is 593°C (1100°F) and was arrived at
by the following procedure.

Thermodynamic gas equilibrium compositions were calculated in the
computer program (NAS SP-273) for a wide range of operating
conditions listed below:

Reactant Gas Compositions - H 2/Co molar ratios from 2.0 to 4.0 in
0.2 increments

Dew Points	 - Bone 3ry, 27 and 38°C (80° and 100°F)

Temperatures	 - '49 0 to 816°C in 55°C increments
(300 to 1500°F in 100°F increments)

Total Gas Pressures	 - 1 and 1.4 atm (15 and 20 psia)

Based on the enthalpy of equilibrium gas products (obtained froln
Girdler Tabulations), it was determined that at a H /CO molar
ratio of 4.0, the adiabatic temperature was 552°C (1025 ZF), at a
ratio of 2.6, the temperature is 593°C (11006F).

The calculated adiabatic temperatures are in good agreement with
the maximum experimentally measured bed temperatures. No temper-
atures in excess of 585 °C (1087 °F) were noted in the bed region
under any design or off-design condition run.
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The reactor's upper temperature level is regulated by a variation
in the gas products' enthalpy via the reversible nature of the
steam reforming reaction. Thus temperature greater than 593°C
(1100°F) cannot be achieved without external heat input. This
inherent self-control feature of the reaction is used in the
subsystem to assure a safe system--one that the laws of chemical
thermodynamics prevent from "running away".

Water Accumulator

The water accumulator is sized to hold 45 grams (0.1 lb). For
3-man operation at an H /CO molar ratio of 2.6 it will cycle
approximately every 41 iinuies during continuous operation and
about every 24 minutes during the on phase of cyclic operation.

Cooling Gas Flow Requirements

A constant cooling gas flow for the condenser and the reactor was
selected to meet all requirements and is never changed during
reactor operation. This capability increases system reliabiity
by eliminating the need for active coolant controls. The cooling
gas requirement is calculated from the change in enthalpy of the
process stream ( H = H products - H reactants), and the reactor
inlet and condenser exit temperature requirements. For the
Sabatier subsystem assuming a reactor inlet temperature of-25°C
(77°F) and an outlet temperature of 100°C (212 0 F); nominal three
man flow conditions with 318 grams/day J0.7 lb/day) oxygen leakage,
the calculated total flow rate = 0.52 m 3/min (18.4 cfm). During
testing fan flow was measured as 0.62 m /min (22 cfm l .

Charcoal Bed

There are no specific requirements for a charcoal sorbent bed
upstream of the Sabatier reactor. However, there are the possi-
bility of contaminants which may be released by the CO removal
system to the Sabatier reactor subsystem. Consistent iiith the
RLSE baseline, a charcoal filter is provided. If in the future,
the development of the CO removal system obviates the need, the
charcoal filter may be reAoved. The filter size at this time is
the minimum required to prevent flow channeling.

Condenser/Separator Sizing

The full range of possible subsystem operation was considered
when sizing the condenser/separator. CO flow rates of 1 man (at
minimum metabolic rates) continuous to 3 2man (maximum metabolic
rate) cyclic operation and a H 2/CO 2 molar ratio of 1.8 to 5.0
were considered. The sizing case occurred at the maximum CO flow
rate of 3 man cyclic and a H to CO molar ratio of 5.0. This
design case has the highest dater pioduction rate and effluent
flow.
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A process gas inlet temperature of
design. This value was greater or
outlet temperature recorded in our
design cases, represents the most

100°C (212 0 F) was used in the
equal to the highest reactor
tests and except for the off
severe performance condition.

The cooling air stream was considered to be 0.71 m 3/in (25 cfm) it
24°C (752F). The condenser/separator was foundto require 0.04m
(0.41 ft ) of heat transfer area and 0.08 m (0.19 ft ) of mass
transfer area. The air stream flows over stainless steel fins
0.51 cm (0.2 in) hiqh by 5.1 mm (0.002 in) thick, set at 5.5 fin
per cm (14 fins per in).

The process gas passes over pin fins 25 percent open in four
passes. The porous plate is the same material and construction
as used in a Shuttle application, series A316 stainless steel 1.6
mm (0.0625 in) thick, and has a bubble point of 0.5 atm (7 psi).

Sabatier Reactor Catalyst

The Hamilton Standard catalyst used in the reactor is:

Designation	 -	 UASC-151G

Composition	 -	 About 20% Ruthenium on alumina

Shape	 -	 14-18 mesh granules

This catalyst is highly active and structually durable. The
activity of UASC-151G is five times greater than that of UASC-

150T, the catalyst supplied for the SSP Sabatier reactor. The
improved reactor performance obtained is primarily due to the
high activity of USAC-151G.

The specific surface area for a 3.8 cm (1.5 in) diameter bed of
the 14-18 mesh granules is 300 percent greater than a bed of 0.3
cm X 0.3 cm (1/8 in X 1/8 in) tablets (SSP Sabatier catalyst)
while the bed porosity is approximately 10 percent greater. The
determination that the active Ruthenium is dispersed to a much
greater extent on the granular support (4 to 5 times) is borne
out by the hydrogen chemisorption measurements. Microprobe
results indicate that Ruthenium deposition is uniform over the
outer granular surface and throughout the cross-section of the
UASC-151G granules.
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Computer Program

The Hamilton Standard thermal math model of the Sabatier Reactor
has been implemented for computer simulation using the H581
thermal analysis program. This program was merged with several
subroutines which handle the chemical heat generation and chemical
analysis.

H581 is a generic heat transfer program which solves a nodal heat
transfer network. It was used to perform the thermal analysis of
the Sabatier thermal model. The special chemical analysis routines
calculate the chemical heat generated and provide the calculated
heat as an input to the program. Also, the H581 provides the
temperature distribution of the catalyst bed required by the
chemical analysis routines, and so the calculations are iterative.
Carbon dioxide and hydrogen flows into the reactor are determined
by the chemical analysis routines from the mass flow heat capacity
for hydrogen and carbon dioxide input to the program. Therefore,
any reactant flow case is specified by inputting the appropriate
values for the mass flow heat capacity and the reactant gas film
coefficients.

Input for the Sabatier simulation is in four major sections: (1)
• list of conductivities, (2) a list of thermal connections, (3)
• description of each node, including thermal mass, and (4) data
for the chemical reaction subroutines.

Hardware Description

The Sabatier subsystem, Figure 6, consists of the following
assemblies.

• Sabatier, Package Assembly	 Figure 2
• Sabatier, Driver Box 	 Figure 3
• TIMES, Controller	 Figure 7
• TIMES, Display and Keyboard	 Figure 5
• Interconnecting harnesses

The TIMES items are used to operate the Sabatier subsystem, to
reduce program costs and to demonstrate the common capability of
these items.
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The Sabatier package assembly, driver box and TIMES controller
will be installed in the NASA test racks in close proximity to
one another while the TIMES display and keyboard will be located
remotely in the laboratory control center. A 10 meter transmis-
sion line is provided to permit the remote location. A 10 meter
line is also provided to permit the NASA to install a remote
discrete shutdown switch. The Sabatier electrical harness is
defined by Hamilton Standard drawing SVSK 100140. An 0-5VDC
analog output of all input parameter suitable for interfacing
with the NASA Data Acquisition System is provided. A general
purpose communication link for remote display, recording, or for
transmitting information to other subsystems is also provided.

Controller and Display

Figure 8 is a block diagram of the control and display layout.
This portion of the subsystem utilizes an advanced microprocessor-
based controller and display that provides automatic control, 24
hour monitoring of subsystem water output, automatic shutdown,
subsystem performance and flow monitoring, and maintenance servic-
ing and checkout provisions.

A multi-colored Cathode Ray Tube (CRT) display format shown in
Figure 9 provides a continuous readout of system mode, any subsys-
tem anomolies or advice system status, and operations instruc-
tions. Any one of six visual displays of appropriate data can be
selected. These are:

- Mode Selection Table (Figure 10)
- Operation Diagram (Figure 11)
- Performance Diagram (Figure 12)
- Performance Table With Limits
- Performance Plot of Water Production
- Maintenance Diagram

In addition, an anomaly readout together with an anomaly light,
either white, yellow or red is displayed. White for a low level
indication of abnormal occurrence, yellow for a caution and red
for a warning and indicating the fact that the system is automat-
ically being shutdown. An audible alarm accompanies the red
anomaly light. In addition, the status of the electrical heaters,
either on or off, is indicated by having the heater wire in the
schematic glow red if on; and if off, blue. The status of the
height of water in the accumulator is also v'::ibly displayed in
green in real time.

The display provides maximum essential information at a glance
and requires minimum interpretation and training f-_i: monitoring
or subsystem control. The microprocessor controller provides
automatic sequencing, dynamic control, failure detection aild
isolation, processes instrumentation si.anals, ca'culates water
production rate and provides ground test instrumentation inter-
faces.
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Control of the subsystem is straight forward and requires minimal
instruction for operator usage as control is experienced by
inputting commands designated on the CRT display using the key-
board shown in Figure 13.

Four operating modes, shutdown, purge, stendby and process, and a
maintenance checkout mode are provided. The logic summary for
these modes is shown in Table 4. Also shown are the malfunction
shutdowns and the modes during which they are initiated. The
maintenance checkout mode can only be entered after the system is
completely shutdown, purged and by entering "107 DISPLAY" on the
keyboard. This mode permits electrical operation of the elec-
trical valves (Item 306) and operation of the pump (Item 545).
Operation of the pump, while clean filtered water is fed into the
subsystem upstream of the condenser outlet (sample point 806)
will permit purging of gas from the pump during the initial
start-up of the subsystem. This pump operation will also permit
observation of the accumulator fill and dump cycle diagramatically
on the screen. Caution--"Operation of the pump without an external
supply of water will pump the water subsystem dry and result in
the pump becoming airbound."

Operation of the subsystem automatically drives the valves to the
proper position whether left in the wrong position, the mainten-
ance mode, or if manually repositioned when the power was off.

Subsystem operating time is recorded by an elapsed timer moun-ed
in the driver box. The timer is actuated upon subsystem power
application and selection of a mode that requires fan operation.
This prevents accumulation of "operating time" on a shutdown
system when only power is supplied.

The Sabatier driver box which interfaces with the TIMES controller
and display uses low voltage logic signals from the controller to
control high voltage switches that in turn supply power to the
various subsystem component motor and heaters. All main control
relays are high quality military-type relays designed for 400
cycle use.

Sabatier Package Assembly

Thi Sabatier package assembly is packaged in a 0.18 m 3 (6.3
ft ) volume 61 cm X 63.5 cm X 45.7 cm deep (24" X 25" X 18"
de;- . ). The cooling fan is included within this envelope. Compon-
:r,c were grouped for the best compromise of simple plumbing,
manual valve operation, and maintenance accessibilty. Portions
of the reactor' are insulated and also thermally isolated from the
structure. All interfaces terminate at the aft surface of the
package. The structure is built within an aluminum frame with
channel sections bolted together with simple support brackets and
panels as required.
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This package fits within the RLSE test area specified by the
NASA. A flight experiment package of the same subsystem can be
much smaller since improved packaging efficiency will be achieved,
the cooling fan and muffler can be eliminated as well as the
manuai shutoff valves.

Weight and Volume

Total weight and weight breakdown are presented for the preproto-
type hardware in Table 5.

The package wf•i^ht includes:

• Sabatier Fac.;kaging assembly
• Sabatier Driver Box
• Ducts, tubes and fittings
• Frame and brackets
• Fasteners
• Wiring and all Sabatier electrical harnesses (5) between
the subsystem package, driver box and the controller (TIMES)

Table 6 defines the Hamilton Standard part numbers and design
comments for all component items in the subsystem.

Component Descriptions

The Sabatier subsystem components were selected for their demon-
strated ability to meet Sabatier subsystem requirements. All
components are backed by test data and are used here in less.
demanding requirements than they have demonstrated in the past.
The main dynamic components--the reactor and the water condenser/
separator are new designs based on previous Hamilton Standard
designs.

Sabatier Reactor: The catalyst bed weighs 460 gms (1.01 lbs) and
is contained in a cylindrical tube, 34 cm (13.5 in) long, 3.6 cm
(1.43 in) in diameter separated into two zones: the high temper-
ature primary reaction zone; and the cooling or secondary reac-
tion zone. Two heaters for redundancy are used to initially heat
up the catalyst to start the reaction. The heaters are not
required during normal cyclic operating modes, as there is suf-
ficient thermal storage to restart the reaction.

The first or primary reaction zone is insulated to prevent heat
loss to the cabin and to retain the heat of reaction during the
"down" cycle of operation, eliminating power and time requirements
for reheating of the catalyst. Two cooling jackets with a fixed
rate of cabin air flowing through them surrounds the secondary
zone.
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TABLE 5

PREPFDl0rYPE SABATIER SUBSYSTEM WEIGHT

PRE PROIXYTYPE
UNIT TOTAL UNIT MIKE
WT. WT. WT. WT.

DESCRIPTICN QTY. kgs. kgs. lbs. lbs.

VALVE, ELECTRICAL SET7P-OFF 5 0.82 4.08 1.8 9.0
VALVE, CHECK WATER 2 0.05 0.09 0.1 0.2
CANISTER, CHARCOkL 1 0.62 0.62 1.4 1.4
SABATIER RFACTm ASSEMBLY (IIVSTRUMENTED 1 3.40 3.40 7.5 7.5
HEATER, ELECTRIC 2 (0.05) (0.10) (0.1) (0.2)
CCNDENSER/SEPARATOR (DRY) 1 1.32 1.32 2.9 2.9
SENSOR, TEMP. 2 0.05 0.09 0.1 0.2
SENSOR, LIQUID 1 0.09 0.09 0.2 0.2
REGULATOR BACK PRESSURE 2 1.13 2.27 2.5 5.0
VALVE, MANUAL SHUT-OFF 4 0.23 0.91 0.5 2.0
FAN, COOLING/MUFFLER ASSEMBLY 1 1.91 1.91 4.2 4.2
ACCUMULATOR ASSEMLY 1 1.13 1.13 2.5 2.5
PUMP 1 1.81 1.81 4.0 4.0
SENSOR, COMBUSTIBLE GAS SENSING ELEMENT 4 0.14 0.56 0.3 1.2
CaNTROLIER, COMBUSTIBLE GAS SIGNAL COND. 4 1.31 5.24 2.9 11.5
DRIVER BOX 1 6.53 6.53 14.4 14.4
SENSOR, PRESSURE 2 0.14 0.28 0.3 0.6

CCMPCNENT SUB-TOTAL 30.3 66.8

PACKAGING (INCLUDES MRNESSES) * 19.3 42.6

TOTAL WEIGHT (DRY) 49.6 109.4

* BEIWM SUBSYSTEM PACKJ%GE, DRIVER BOX & C(N"TROLLER (TIMES)
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TABLE 6
DESIGN DEFINITION

ITEM NO.

ITEM 46

ITEM 26

TIEM 61

ITEM 51

TREK 91

ITEK 31

ITEM 545

ITEM 306

ITEM 310

ITEM 507

ITEM 178

ITEM 178

ITEM 41

ITEM 42

ITEM 81-1

ITEM 81-2

ITEM 902-1

ITEM 902-2

ITEM 907

ITEM 82

ITEM 83

ITEM 85

ITEM 86

ITE7N 259

ITEM 876

ITEIN 87

ITEM 701-705

ITEMM 801-809

PART NAME

SABATIER PACKAGE ASSEMBLY

FAN, SRBATIER AIR CO0 ME

SIIEN(:ER, FAN

AOAPIBR, FAN HCXJSING

AOCIMILATOR ASSEMBLY

07NDEM SER, SABATIER

NFACM, SABATIER

CANISM, (}YUCOAL

PUMP

VALVE, ELoc:TRICAL S.O.

REGULATOR, BACK PRESS.

VALVE, WWW►L S.O.

SINSOR-CCMBLISTIBLE GAS

SENSOR, MON TIO]R ASSEMBLY

VALVE, t]B"

VALVE, CHECK

FILTER, OUNOEMSER INLET

SENSOR, TEMPERATURE

SENSOR, TEMPERATURE

TRANSDUOER, PRESSURE-GAGE

TRANISI)WER, PRESSURE-GAGE

CELEC`LOR, L10JID WATER

HARNESS, EIDCIRICAL

TIEING, FLEXIBLE

HIEING, SENSOR

ER-14E, SABATIER PACKAGE

BRACKET, REAL-M, MOINTING

BRACKET, REALM, MOUNTING

SENSOR, TEMPERATURE

HEATER — REAL711OR

SENSOR, TEMPERAT M

!!L-!RMO00UPIE, ORCME PALLNEL

ACIL MILATOR

SENSOR, CUALITY—ACCUMULATM

I MOCOUPLE, CHIaOMEL—AUP EL

ORIFICE, COMfIOL

SAMPLE/PRESSURE I=

DESIGN OOMMENTS

HAMILTON 91ANOARD DESIGN,
SEE DESCR PTION IN TEXT

BUY ITEM

MODIFIED 00MMUCIAL 1`194

HAMIE" STANDARD DESIGN

(2 E, SHLnTLE ITEM

HAMILTON STANDARD DESIGN

dAMIWON STANDARD DESIGN

HAMILTON STANDARD DESIGN

GEE, SSP rIEM

GFE, SSP ITEM

GEE, SSP ITEM

GFE, SSP TTEM

GFE, SSP ITEM

GFE, SSP ITEM

CA'DUUG ITEM

CATALOG ITEM

HARWICH STANDARD DESIGN

CAVJ= ITEM

CAIIALOG ITEM

GEE, MODIFIED SSP

GFE, MODIFIED SSP

HAMILTON S`DRNDARD DESIGN

HAMILTON STANDARD DESIGN

CATU= ITEM

HAMILTO7N STANDARD DESSIGN

HAMILTON STANDARD DESIGN

HAMILTO7N STANDARD DESIGN

HAMILIO7N STANDARD DESIGN

HAMILTOJN STANDARD DESIGN

HAMILTON STANDARD DESIGN

CATALOG TTE N

HAMILTON STANDARD DESIGN

GFE, MODIFIED SHl►1TLE ITEM

GFE, SHUTTLE ITEM

CATALOG ITEM

HAMILTON STANDARD DESIGN

CAMU OG ITEM

PART NO.

SVSK %5M

SVSK %467

SVSK 96471

SVSK 99752

SVSK 96490

SNSK %349

SVSK 96482

SVSK 96470

SVSK 86329

SVSK 84424

SVSK 84412

SVSK 84530

bVSK 84456-100

SVSK 84456-200

SVSK %466

SVSK 101124

SVSK 101126

SVSK 96465-1

SVSK 96465-2

SVSK 101128-1

bVSK 101128-2

SVSK 101129

SVSK 100140

SVSK 101127

SVaK 99753

SVSK 101130

SVSK 101125-1

SVSK 101125-2

SVSK %499

SVSK %486

SVSK %465

SVSK %497

SVSK %492

SM 764179
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A platinum resistance temperature (PRT) sensor is located below
the heater rod to indicate when the catalyst and reaction has
reached a high or low temperature. Another PRT sensor located
on the outside of the reactor underneath the insulation is used
to monitor the temperature in the event that the bed temperature
becomes too high due to failure to turn off the heaters.

A multi-point temperature sensor probe is included to take a
temperature profile of the internal bed at 8 different points
along the length. Three thermocouples are also located in the
bed next to the outside wall.

The unit is of all stainless steel construction welded and bolted
together with an aluminum perforated sheet outside shell for
handling and touch temperature protection.

The catalyst bed is enclosed in a stainless steel tube with a
welded cap on the inlet end with an .jutn:ng for the reactant gas
and the heater elements. The heater elements are enclosed in
close fitting sheath for good heat transfer into the primary
zone of the catalyst bed. The heaters can be removed and/or
replaced without disturbing the bed. The exit end is flanged and
bolted with provision for preloading the catalyst bed.

The primary zone is insulated with a High Temperature Min K (F
182) blanket. The cooling jacket consists of stainless steel
serrated fins wrapped around the bed cylinder for good airflow
and heat conduction, covered with a shell of stainless steel.

The unit is three-point mounted with the single point at the
bottom mount for axial movement. Figure 14, 15 and 16 show the
reactor internal configuration, outside configuration before
insulation and heaters are installed and after insulation is
installed.

Condenser/Separator: The condenser/separator shown in Figure 17
is an all stainlesssteel plate and fin heat exchanger. The unit
is made up of three adjacent layers. The first layer is a single
pass 0.51 cm (0.200) inch) high plate and fin construction with a
header on one end for avionics or cabin air flow. The water
collection pass is a pin-fin plate that is the cold plate of the
system and is on one side of the cold air pass. The top layer or
hot pass consists of a stainless steel porous plate that is in
contact on one side with the pin fin plate and on the other side
with a 4 pass configuration of stainless steel serrated fins
separated with stainless steel pass separators. The top plate is
a solid stainless steel plate that is brazed to the top unit.
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FIGURE 15
REACTOR BEFORE INSULATION INSTALLED
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FIGURE 16
REACTOR ASSEMBLY (INSTRUMENTED)
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FIGURE 17
CONDENSER/SEPERATOR
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Maintenance

Maintenance of the subsystem was considered in the design and
layout of the hardware. No scheduled maintenance is required for
any of the items except possibly for the charcoal filter, Item
31, depending on the quality of the inlet gases. All components
items are considered line replaceable components and are easily
removed as ample access to all items has been provided. Particular
attention was made to facilitate removal of the reactor, Figure
18, the combustible gas monitors, Figure 19 and the heaters in
the reactors Figure 20. In addition, a bolted flange in the
charcoal canister and the Sabatier reactor permits replacing the
charcoal or catalyst bed.

A special maintenance checkout mode in the controller logic has
been provided which permits the electrical valves to be actuated
independently to an open or close position, the pump to be oper-
ated, and the accumulator to be filled and emptied without result-
ing in an automatic system shutdown. The latter permits charging
with water and purging of air from the system during initial
(first time) start-up of the subsystem. A maintenance diagram
can also be displayed which identifies and shows the location of
all component items within the subsystem.

An Operating and Maintenance manual SVHSER 7222 provides more
details for operating and maintenance of this subsystem.

SUBSYSTEM FABRICATION

Table 7 identifies the principal items in the preprototype Sabatier
subsystem and shows whether they are make, buy or GFE items. The
Sabatier subsystem package assembly was assembled using 1/4 inch
and 1/2 inch stainless steel tubing, as appropriate, and Swagelok
or equivalent stainless steel fittings. Components were located
to facilitate maintenance, manual positioning and visual monitor-
ing of the valves, to minimize line lengths and crossover points,
and to provide all interface connectors on the back side of the
package.

SUBSYSTEM TESTING AND RESULTS

The Sabatier test program was conducted in accordance with the
Hamilton Standard Test Plan SVHSER 7196 Revision A (Appendix A).

The laboratory test system used for this test program is a Hamilton
Standard rig constructed from commercial hardware. This rig
permitted testing on a continuous basis over the full range of
reactant compositions and flows required to determine the effects
of variation in H /CO molar ratios, reactant flow rates, reactant
operating pressuris a9d gas cooling flow rates on H 2/CO2 conversion
efficiencies and reactor temperature profiles.
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FIGURE 18
REACmnP TNCTAI LATION
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FIGURE 19
GAS MONITOR INSTALLATION
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FIGURE 20
NEATER INSTALLATION
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TABLE 7
PRBPRD7rm 8AM'MCR SuNyom

MAKB/BUY Liar

QA'Y. Pm

ASSY PART NO 1941 MD PAID' NAME

1 SVBR 96500 — SAMTM Pl%CKX 6 ABSOSLY MAR
1 SM 96467 rr811 4i FAN, SAlnso AIR CwImv BUY
1 SVBK 96471 rraM 26 SUANCOt, FAN MOD rm BUY
1 SVBK 99752 — AMPIle, FAN l&JUB MG MAR
1 SVEL 9A49O rreM 61 ACCLNAA90R ABNODI.Y MODIFIED GFB
1 SVSK %349 rm 51 CONDONICR, 9mrsm MAIM
1 SVSK 96482 ITEM 91 R IVOR, SAMTIBR MAR
1 SVSK %470 rroM 31 CANIOM, c7Y1RLa0AI, MAR
1 SVSK 86329 rm 545 PUMP GFE
5 SVSK 84424 rrBM 306 vRm' EIA`MCAL 6.0. an
2 SVSK 84412 rrEM 310 RORRML]R, BACK PRESS. GFE

4 SVSK 84530 rrCM 507 VALVE, MANLiAL S.O. GFE

4 SVSK 84456-100 rmM 178 SENSOR-COMMMISLE GAS CFF.
4 SVSK 84456-200 rM 176 SENSOR, MM17OR ASSM Wt GFE
1 SVSK %466 rm 41 VALVE, CHECK BUY
1 SVSK 101124 rrEM 42 WAM, CHIXA BUY

1 3VSK 101126 -- FILTER, O	 v4zr MAR

1 SVSK 96465-1 rrQ1 81-1 SENSM, TZMPEPATURE BUY

1 SVSK %465-2 rlflM 81-2 Sf: ll;oR, TEMPERATURE BUY
1 SNU 101128-1 IM 902-1 TRANSDUCER, PRESSURE-GAGE MO04FIED GFE

1 SVSK 101128-2 rrEM 902-2 TMODUCER, PRESSUVE-GAGE MODIFIED GFE

1 SVSK 101129 ITEM 907 DrrwTOR, LIQUID am MAKE
5 SVSK 100140 — HARNESS, ELECTRICAL MAKE

1 SM 101127 -- TUBING, FLEXIBLE BUY
1 SVSK 99753 — HOUt:'ING, Smom MAKE
1 SVSK 101130 -- FRAME, SAMTIER PACKAGE MAKE

1 SM 101125-1 BRACKET, REIIL'IDR, EOUWrING MAKE
1 SVSK 101125-2 -- BRA3W, RJICLOR, MOU+ErING MAKE

1 SVSK %499 rrEM 82 SENSOR, TEMPERATURE an
2 S'VSK %486 rrEM 83 HEATER - REACTOR IMN

1 Sm %"5 rrEM 85 SEmiOR, T4IPERAIm BUY

11 SVSK %497 rrEM 86 T1Em4V000PLC, Gam, BUY
1 S'JSK 96492 rrem 2S9 AcXINJ ATOR MODIFIED GFE
1 SVSK 764179 rrEM 876 SENSOR, QUALITY-+ACCU4UTA7M Gm
1 — rrEM 87 '1%ERoKXOUPLE, CWLVUZ - %UNM BUY
1 FA — rrEM 701-7OS ORIFICE, amux MAKE
1 FA -- rrEM 891-809 SA uVIRESSURE PORT BUY
1 SVSK 97813 rrEM 71 mum BQK, SABATIER MAKE
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Photographs of the test rig are shown in Figures 21 and 22. The
facility consists of a reactant and cooling gas conditioning and
supply section, the test hardware, product gas metering, product
water collection, power supplies, instrumentation and data collec-
tion. The display and keyboard is shown in Figure 5.

During all testing a calibrated gas chromatograph shown in Figure
23 was used to record outlet gas composition and to verify inlet
conditions when mixed gas flows were used and to verify the
certified bottle blend when a new bottle was placed on line.

During all subsystem testing the data was recorded as noted in
Table S. The recording times were dependent on the type of test
being conducted. Most of the subsystem performance and endurance
testing was performed without the TIMES controller and display
because it was being used for testing the TIMES subsystem. A
photograph of the data acquisition unit is shown in Figure 24.
During cyclic runs at least one complete "off" and "on" cycle,
temperature profiles were recorded every minute and an effluent
gas sample was analyzed and plotted out every nine minutes
during the on cycle. A typical sample raw data test summary
sheet is shown in Figure 25.

Accuracy

All gas flows including COH and N were measured with Fischer-
Porter flow meters calibrated it operitinq pressures and temper-
atures. The gas flow meters which were periodically calibrated
with a wet test meter were accurate to +lt full scale. All
effluent gas flow rates were measured by determining the quantity
of flow with a wet test meter for a time interval measured by a
stop watch. The accuracy of the product gas volume is +l$ of the
sample volume.

Pressure gages for the reactant, product, and cooling gases span
a range 25 0-2.0 atm (0-30 psis) and are capable of reading to
1.7 X 10	 a Ur

t 
0.025 psia). All gages were calibrated prior

to testing by  e Hamilton Standard metrology laboratory.

The test rig permitted the option of humidifying the reactant
gases to dewpoints up to room temperature. A Cambridge Systems
Model 880 Dewpoint Hygrometer provided a measure of the humidity
of the reactant gases prior to entry into the reaction chamber.
Dewpoint readings were within +.055 0C (+0.1 °F ) for the 4.4°C
(40°F) to 49°C G 20 ° F) range.
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FIGURE 21
TEST RIG - F^.O:'T
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FIGURE 22
TEST RIG - REAR
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FIGURE 24
DATA AQUISITION UNIT
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TABLE 8

DATA ROCORD MLMM

PARAMETER
WITHOUT CWIPDLI.ER

i DISPLAY
WITH CON FKXA R

i DISPLAY
DATA

ACQUISITION HAND CHROMAIKXMAPH
UMA

ACQUISTTIUN HAND CHROMATOGRAPM
PRINTMT TAB PRINDOLTT PRINlKM 'DAB PRINDOIIT DISPLAY

TIME x x x x

P-SUPPLY
x x x

P-M
x x x x

PN	 UREWATER BACK PRESS x x x
2

RFJK"IOR TE14PERATURPS (11) x x

T-REN TOR CONTROL x x

T-REACTOR OVERTEKPERATURE x x

T^ :YNDENSER IN x x

T-CCNDFTNSER OlT x x

FLOW M-FLO RAM x x

FLEW OV,--WET GAS METER x x

P BAROMETER x x

GAS CO MPOSITION IN x x x x

GAS COMPOSITION OUT x x

WATER OUT x x

DEW POINT IN x x

T-REACTOR COOLANT OITTIET (2) x x

T-.WIESTT x x

T-CODLANT OUT, MIXED x x

WATER PP ' "TION RATE x x x
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The gas sampling system was capable of automatically sampling
reactants at the inlet to the reactor, product gases at the
outlet of the condenser, and calibration gases. A Hewlett Packard
Model 5880A gas chromatograph analyzed for H , CO, CO and CH .
Gas composition together with the time of sample injection wele
automatically printed. Approximately nine minutes were required
to analyze a gas sample. The gas chromatograph was programmed
and calibrated to analyze for H2 , CH , CO and CO quantitatively.
Product gas accuracies of +0.18 for A , Ca and CO and 0.58 CH
were obtained with this gas chromatograph unit for the expectes
partial pressure ranges. Certified premixed reactant blends were
used in the test program to insure H2 and CO2 reactant gas accur-
acies of +0.018.

All thermocouples used were type K chromel-alumel thermocouples.
The temperature readings were accurate to within +0.58.

Hydrogen conversion efficiencies for H /CO molar ratios < 4.0
were calculated by substituting experigentilly measured values
into the following equation:

RH in - x(RTout)
8 Hydrogen Efficiency =	 2	 X 100

RH2in

Where	 x	 =	 8 H 2 in dry product sample

RTout	 measured dry product flow-out, cc/min

R H 
2 

in	 a	 measured H 2 reactant flow cc/min

Similarly, carbon dioxide conversion efficiencies for H /CO 2 molar
ratios >4.0 were calculated by substitution, experimentally measured
values into the following equation:

RCO in - y(RTout)
8 Carbon Dioxide Efficiency	 2 R	 X 100

CO2 in

Where	 y	 =	 % CO2 in dry product sample

RTout	 =	 measured dry product flow-out, cc/min

RCO2 in	 measured CO 2 reactant flow cc/min

The calculated H and CO conversion efficiencies are accurate to
within +0.058.	 able 9 summarizes test data tolerances.
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TABLE 9

TEST EATA TOLERANCES

Item Tolerance

Product Gds Compositions:
H, and CO2 +0.18 full scale

4
70.58 full scale

Reactant Compositions
(Certified Mixtures):

H2 and CO2 ±0.028 full scale

Product Gas Volume +18 of sample volume

Product Liquid Volume +18 of sample volume

Temperature +0.58 of reading

Pressure ±0.025 psia

Gas Coolant Flows +28 full scale
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During the test program the following subsystem changes were
incorporated to improve subsystem operation.

Two orifices, Item 705 around the water pump and Item 704 down-
stream of the accumulator were installed because the pump emptied
the accumulator so fast that a suction pressure was induced
across the porous plate resulting in gas breakthrough and the
pump becoming gas bound. This resulted in a loss of pumping
capacity. The orifices prevent this from happening by permitting
water flow around the pump and regulating the rate of water
discharge from the accumulator. As a result, extensive pressure
drop across the porous plate does not occur.

A check valve Item 42 was installed downstream of the condenser/
separator outlet to prevent emptying of the water from the sub-
system when it is shut down or when the subsystem is dried out by
purging for long periods of time with dry nitrogen. The check
valve also permits charging of the downstream lines and accumulator
with water to reduce start-up time and, more important, to purge
the pump of gas during initial subsystem start-up operations.
Subsystem operation on a day-to-day basis after the initial gas
purge start-up does not require charging of the subsystem.

Subsystem controller logic was established so that the nitrogen
purge valve, Item 306-3, is closed if an excessive pressure (<1.4
atm (6.0 psig)) is sensed upstream of the reactor. This provides
overpressure protection in the event the nitrogen supply pressure
is too high to be controlled to an acceptable level by the Item
703 orifice. Overpressure protection from the reactant supply is
sensed by Item 902-1 pressure sensor which closes Item 306-1 and
opens Item 306-2.

Eight sample ports were provided (Item 801 thru 809) to facilitate
testing, charging of the subsystem, or to provide instrumentation
or sampling ports.

Calibration Curves

Calibration curves for the following items were determined or are
provided as noted on the following page:
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Accumulator Assembly - Figure 26
Item 61

- This curve is typical,
as the original quantity
sensor failed due to the
use of the wrong test
equipment. A calibration
curve for the shipment
item was not run.

Pressure Transducer - Figure 27 - This item was converted
Item 901-1	 from an absolute pressure

transducer to a gage pres-
sure transducer.

Pressure Transducer - Figure 28 - This item was converted
Item 901-2	 from an absolute pressure

transducer to a gage pres-
sure transducer.

Temperature Sensor - Table 10	 -
Items 902-1, 85-1, 81-1 and
81-2

Combustible Gas Sensor Per SVSK TR 84456
Item 178

Test Time

A total of over 720 hours of test time (versus 324 hours required
by the contract) with reactant flow through the reactor was
accumulated during tn::s program. Since the catalyst used in the
reactor had been previously used for breadboard testing, the
catalyst now has over 1000 hours of test time on it. No degrada-
tion in performance has been experienced, in fact performance has
improved over this time.

Table 11 defines the test time required, the actual test time
accumulated, whether certified premixed reactant blend gases were
required, and when actual certified premixed reactant blends were
used. A check in the later columns indicates that as a minimum,
the required test item was accumulated using the certified blend.
As can be noted, a good portion of the testing was accomplished
using certified blend gases.

When certified gas blends were not used, the gas supply consisted
of mixing a shop hydrogen gas supply with a bottled supply of
carbon dioxide at 1.7 atm (25 psia) in the proper proportions as
measured by calibrated flow meters and verified by the gas chro-
matograph to obtain the desired molar ratio.
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Figure 26

Accumulator Calibration Curve
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Table 11

SABATIER TEST LOG

Test
No. Test Description

Molar
Ratio
H2/CO2

Test
Time
Req'd
Hrs.

Actual
Test
Time
Hrs.

Certified
Premixed Gas
Req'd	 Test

1 3 Man Cont. 2.6 2 2.25

2 N	 N	 N 2.6 2 2.0

3 2.6 2 5.0

4 3 Man Cyclic 2.6 2 2.25 3 r`

5 "	 " 2.6 2 4.75

6 n 2.6 2 3.75

7 1 Man Cont. 1.8 2 2.8

8 3 Man Cyclic 1.8 2 4.0 V'

9 1 Man Cont. 5.0 2 2.0

10 3 Man Cyclic 5.0 2 3.0

11 1 Man Cont. 1.8 2 3.25 V

12 3 Man Cont. 1.8 2 4.7

13 3 Man Cyclic 1.8 2 4.0 V/

14 1 Man Cont. 2.6 50 57.0

15 3 Man Cont. 2.6 8 12.75

16 " 2.6 120 120.0

17 " 2.6 8 84.85 v

18 3 Man Cyclic 2.6 10 38.75

19 10 Man Cont. 2.6 10 12.25

20 1 Man Cont. 3.5 2 5.25

21 3 Man Cont. 3.5 2 8.7 J
22 3 Man Cyclic 3.5 2 5.0

3$ I 3TF"3-
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Table 11 ( Continued)

SABATIER TEST LOG

Test
No. Test Description

Molar
Ratio
H2/CO2

Test
Time
Req'd
Hrs.

Actual
Test
Time
Hrs,

Certified
Premixed Gas
Req'd	 Test

23 1 Man Cont. 4.0 2 7.5

24 3 Man Cont. 4.0 2 12.5 ^/ y
25 3 Man Cyclic 4.0 2 7.25

26 1 Man Cont. 5.0 2 2.5 V/

27 3 Man Cyclic 5.0 2 4.0 3 I/

28 3 Man Cyclic 5.0 2 3.0

29 1 Man Cyclic 1.8 4* 18.0*

30 3 Man Cyclic 1.8 4* 14.5*

31 1 Man Cyclic 2.6 20* 25.4*

32 2 Man Cyclic 2.6 10* 39.0*

33 3 Man Cyclic 2.6 20* 41.75*

34 1 Man Cyclic 3.5 2* 2.75*

35 3 Man Cyclic 3.5 2* 2.2*

36 1 Man Cyclic 4.0 2* 3.6* v

37 3 Man Cyclic 4.0 2* 15.95*

38 1 Man Cyclic 5. 0 4* 5.4*

39 3 Man Cyclic 5.0 4* 13.4*

Other Miscellaneous - - 113.75
nz	 1 720.7 5

* Reactor "On" Time
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Cooling Flows

The Reactor and Condenser/Separator cooling flows are supplied
by a constant speed cooling Fan, Item 46. Reactor cooling flow
was determined by installing various diameter orifice (Item 701
and 702) sizes in each reactor cooling circuit line until a
reasonable reactor temperature profile was obtained. The coolant
flow was measured by installing a wet gas meter downstream of
each orifice, one leg at a time, and using the cooling fan to
draw cooling flow over the reactor. The cooling flows selected
at room ambient conditions were:

Middle section (Item 701) - 3600 cc/min (0.092 cfm)
End section (Item 702) - 6000 cc/min (0.212 cfm)

The Condenser/Separator flow at room ambient conditions was 623,000
cc/min (22 cfm).

Power Consumption

The power consumed was measured using the Hamilton Standard Power
Supply Rig 135B. Component rowers were:

Fan, Item 46	 53 watts
Pump, Item 545	 33 watts
Heater, Item 83	 100 watts (each)

Effects of Pressure

The effects of variation in total pressure on the reactor hydrogen
conversion was theoretically and experimentally determined.
Equilibrium hydrogen concentrations and the resulting hydrogen
conversion efficiencies at 260°C (500°F) for H /CO reactant
molar ratios varying from 2.0 to 4.0, total prissuies of 1 and
1.4 atm (15 and 20 psia), and various inlet dew points (dry, 80°F
80 and 100°F) were calculated as shown in Table 12.

The program, NASA SP-273, was utilized to calculated hydrogen
equilibrium compositions at the various operating conditions.
The equilibrium composition and temperature of a reacting mixture
is obtained by applyinq a successive approximation procedure to
find the simultaneous solution of the standard equations of
chemical equilibrium, conservation of (atomic) mass, and conserva-
tion of energy for specified values of pressure and either temper-
ature, enthalpy or entropy.
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TABLE 12

CALCULATED EFFECTS OF 70TAL PRESSURE

AND DEW POINT ON H2 CONVERSIM EFFICIENCY

^r
N2' ' 02

Molar Ratio

Equilibrium
Twiperature°C	 °F) Pressure

abn	 ia)

Inlet Reactant Dew Points

26.7°C( 80°F) 38°C(100°F)

2.0 260 (500) 1.0	 (15) 99.4 99.4 99.4

2.0 260 (500) 1.4	 (20) 99.5 99.5 99.5

2.6 260 (500) 1.0	 (15) 99.4 99.4 99.4

2.6 260 (500) 1.4	 (20) 99.5 99.5 99.5

3.0 260 (500) 1.0	 (15) 99.4 99.3 99.3

3.0 260 (500) 1.4	 (20) 99.4 99.4 99.4

4.0 260 (500) 1.0	 (15) 99.0 99.0 99.0

4.0 260 (500) 1.4	 (20) 99.1 99.1 99.1
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As indicated by Table 12, increasing the total pressure from 1.0
atm (15 psis) to 1.4 atm (20 psis) results in an increased hydrogen
conversion of 0.18. Table 13 tabulated results of pressure varia-
tion from 1.20 to 1.37 atm (19.7 to 17.7 psis). It should be
noted that low hydrogen conversions of 99.28 are attributable to
catalyst chloride contamination which was subsequently clarified
to give conversions of 99.58 for similar operating circumstances.
Based on the results of Table 12, it has been experimentally
demonstrated that reactor performance is negligibly impacted for
a 0.14 atm (2 psia) difference in total reactor pressure.

It should be noted that from a subsystem standpoint there is a
minimum level at which the subsystem can be operated with auto-
matic water removal and no resetting of the pressure regulator to
operate over the crew loading and molar ratios required. This
pressure is 1.2 atm (3 psig) at the 3 man continuous condition
with a molar ratio of 2.6. At this setting the operating pres-
sure will vary from 1.26 atm (3.8 psig) to 1.18 atm (2.6 psig)
depending on the crew size and molar ratio. Operation below 1.2
atm (3 psig) is marginal and not recommended as it can result in
the inability to delivery water automatically which will result
in water carryover in the discharge line and a reduced water pro-
duction rate. The minimal pressure is a function of the pressure
drop in the porous plate, the water check valve, the accumulator
spring rate, line height, and the pressure regulator tolerance.

The operating pressure can be lowered to approximately 1.1 atm (1.5
to 1.6 psig) by completely bypassing the automatic water removal
system. However, since the porous plate requires a driving pres-
sure equivalent to this pressure, operation is considered marginal.

Effect Of Reactant Dew Point

Table 12 tabulates the theoretical H 2 conversion efficiencies for
three dewpoints at various operating conditions based on gaseous
equilibrium at 260 °C (500°F). A negligible decline in if conver-
sion efficiency results from an increase in inlet humidify from a
dry condition to a dewpoint of 37 . 8°C (1000F).

Similarly, the experimental results as shown in Table 14 agree with
the theoretical predictions. The H conversion efficiency is with
in 0.1% for when the inlet humidity 2 is varied from a dry condition
to a dewpoint 21.1°C (700F).
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TABLE 13

EFFWT OF PRESSURE CN H2 CMMRSICN

Run A Date CO Flaw
H2/CO2

Molar Ratio
Pressure

atm (pskaj H Conversion

4 1/31/80 3 Man Cont. 2.52 1.34 (19.7) 99.2

4 1/31/80 3 Man Cont. 2.52 1.29 (18.2) 99.2

5 2/01/80 3 Man Cont. 2.52 1.20 (17.7) 99.2
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TABLE 14
EXPERIMENTALLY DEPERMINED

EFFECT OF REACTANT WA POINT
ON H2 CONVERSION

Run 1 Date Flow
H2/CO2

Molar Ratio
Dew Fbint

°C	 °F 8 H Conversion

18 2/12/80 3 Man Cyclic 2.6 dry 99.5

18 2/20/80 3 Man Cyclic 2.6 21.1 (70) 99.6
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Effect Of H O Co. Molar Ratios - Steadystate

Table 15 summarizes both H and CO steadystate conversion
efficiencies for H /CO 2 molar ratios varying from 1.8 to 5.0 and
CO flows varying from 1 man continuous to 3 man cyclic. As a
rule of thumb, H conversion efficiency declines slightly for a
given CO flow ai the H /CO molar ratio is increased from 1.8 to
4.0. Sigilarly, CO coAverhon efficiency increases for a given
CO2 flow as the H /C7O molar ratio is increased from 4.0 to 5.0.
It should be notes thit tests have demonstrated near complete
conversion of the lean component COwhen the H /CO 2 molar ratio
is increased beyond 4.1. The raw dita test sumiary sheets for
these cases are contained in Appendix B.

CO. Conversion Efficiencies

All testing at a H /CO molar ratio of 5.0 resulted in 1008 conver-
sion of the CO lein component. A 3 man cyclic flow test, was
conducted whicA varied the H /CO ratios from 4.2 to 4.0 in order
to determine the presence of 2CO t in the effluent. flow. At molar
ratios of 4.2 and 4.1 no CO wab detected in the outlet flow. CO2
conversion efficiencies lesb than 1008 were first observed at a
molar ratio of 4.06.

Effect Of Air Addition To The Sabatier Reactants

A test was designed and conducted to observe the effects on
reactor operation resulting from the addition of 5.18 air to the
inlet reactants for 7.5 hours. This test was run at a 3 man
continuous flow and a H /CO molar ratio of 2.46. Subsequent
testing confirmed that go citalyst sintering or deactivation
resulted from this exposure to 18 oxygen.

The reaction between H and 0 resulted in increased heat genera-
tion and a less desirable temperature profile within the bed. As
a result, hydrogen conversion efficiency dropped from 99.18 to
98.78 with the 5.18 air addition.

Figure 29 shows a comparison of the temperature profile with and
without air addition.
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Table 15

Steadystate Lean Cwponent Conversion Efficiency Test Results

CO Flow

H2/CO2 Molar Ratio

LC 2.6 3.5 4.0 5.0

1 Men Continuous 99.8 99.8 99.6 99.1 100

1 Man Cyclic 99.7 99.7 99.2 98.2 100

2 Men Cyclic 99.7 ---

3 Man Continuous 99.3 99.6 99.3 99.0 100

3 Man Cyclic 99.4 99.6 99.3 98.4 100

10 Men Cyclic --- 97.2
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Sabatier Cyclic Operation

Subsystem cyclic tests to simulate light side (55 minutes on) and
dark side (39 minutes off) operation were conducted. Nearly all
cyclic tests were conducted without use of the TIMES controller.
Automatic cycling was accomplished by using a Agastat Programmer
which cycled the Item 306-1 valve and the Item 306-2 valve to
direct reactant into or around the reactor. Cooling flow was
maintained during the whole cycle. Water was removed from the
subsystem accumulator by a breadboard controller which emptied
the accumulator by starting the pump based on a signal from the
quantity sensor Item 876 in the accumulator in the same manner as
the TIMES controller. The Sabatier reactor was capable of start-
ing without heater assistance over a range of operating conditions
listed in Table 18.

Table 16 summarizes the test results for cyclic operation with a
55 min reactant flow period followed by a no-flow period of 39
min. Improved performance was obtained for the 3-man CO flow
conditions after completion of the test program due to removal of
the catalyst chlorides from the aft portion of the reactor bed.
Thus, it is thus anticipated that conversion efficiencies of the lean
component will exceed 99.08 except at the stoichiometric ratio of
4.0 where conversion efficiencies at the higher CO2 flows will be
greater than 98.58.

These tests were conducted without cessation of reactor cooling
durinq the no reactant flow period. However, it is expected that
restart of the Sabatier reactor without heater assistance will be
marginal for 1 man flows with H 2/CO2 molar ratios less than 1.8.

During the no reactant flow period of cyclic operation, it was
observed that the reactor pressure decreased to less than ambient
in approximately 10 minutes. The pressure decay as shown in
Figure 30 results from residual hydrogen reacting with carbon
dioxide and the condensation of product water vapor in a locked
up volume caused by closing the Item 306-1 valve and the pressure
regulator Item 310 acting as a check valve. The reduced pressure
tended to suck water (estimated to be approximatel y 15 ml) from
the condenser back into the reactor discharge line. When the
reactant flow was cycled back on, some of the liquid water was
expelled through the condenser and into the overload dump line
reducing the water production rate. This was particularly notice-
able on some of the one man cases. A test run by shutting off
the reactant gas supply showed a reduced pressure effect (Figure
30) depending on the volume of the upstream line.

It should be noted that hydrogen within the reactor is essentially
consumed after reactor shutdown. Thus, the requirement to purge
hydrogen from the reactor by an inert gas is not necessary. All
cyclic runs were conducted without purging after flowing reactants
through the catalytic bed.
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TABLE ld

AVERAGE LEAN COMPONF'NT CONVERSION EFFICIF]VCY DURING CYCLIC TE_ti'I'ING
(35 MINUTFS :.N--39 MINUTES OFF)

CO	 Flow

H 2/CO., Molar Ratio

1.8 2.6 3.5 4.0 5.0

1 Mar. 99.6 99.6 99.4 98.6 100

2 Man 99.6

3 Man 99.6 98.8 98.1 97.4 100

(49.4) (98.8)

-- Test results after cromQletion of basic test
program and catalyst treatment
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TABLE 17

CYCLE OPERATING RANGE WITHOUT HEATER ASSISTANCE

CO2 Flow	 -	 1-10 man

H2/CO2 Molar Ratio	 -	 1.8 - 5.0

Duty Cycle	 -	 55 min on/39 min off

Dew Point	 -	 Dry - 21.1eC (70eF)
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Water Production

Water production for steadystate operation as a function of
reactant flow is quite predictable. Experimentally measured
water production was usually <2.58 the calculated value. Water
production rates averaged over long periods of time (>2 hrs) were
quite predictable. However, water production rates experimentally
determined for short Feriods often varied widely due to opera-
tional variations in the water removal system; i.e., air bubbles
in the accumulator, variations in accumulator volumes, etc.

Problems in accurate measurement of water production rates for
cyclic operation were introduced by the vacuum anomaly discussed
in the previous section. The vacuum created in the reactant off
flow period of cyclic operation results in water (approximately
15 ml) collecting in the product gas exit lines. Thus the quantity
of,water as determined by accumulator volume displacement will
provide erroneous readings which are greater for the nominal low
water production situations; i.e., lower CO 2 flows and H2/CO2
molar ratios.

Water Quality

Product water was periodically analyzed for pH conductivity and
chloride content. Water quality improved significantly during
the course of this program. For example, pH values improved from
2.0-4.0 at the very start of the test to 4.5-6.0, chloride content
to levels barely detectable by the sensitive silver nitrate test
from readily apparent, and conductivity from 300-500 mhos to 20-
30 mhos. The improved water quality was obtained during most of
the Sabatier test grogram.

Subsystem Malfunctions

During the 720 hours of testing some equipment malfunctions
occurred. These were:

Heater, Item 83--This item failed after approximately 600
hours of testing ( estimated). Failure was not detected
until operation with the controller and display which
showed that one heater was not operating at start-up.
Start-up times with one heater were slightly longer but
just within five minutes so malfunction went undetected
earlier. The cause of the malfunction was not determined.

Reactor overtemperature sensor, Item 85,--This item failed
shortly after testing began. Failure was caused by the
vendor inadvertently using low temperature lead wires.
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• Check valve, Item 41,--This item periodically tended to
stick open apparently due to calcium or dirt deposits on
the valve seat. The valve was replaced and filtered
water used to charge the subsystem and the problem did not
reoccur.

• Air in the Item 545 pump--If the pump becomes air bound it
will not pump; as a result, the lines must be charged
initially with water and the air removed. Once this is
i. ,ae there is no further problem.

dater liquid detector, Item 907--The initial design did
not have a sheath on the probes. As a result, moisture
wicked up the probe and bridged across to the other probe
resulting in a water carryover malfunction indication and
an automatic system shutdown. The design was changed per
SVSK 101129 and no further problems have been encountered.

Accumulator quantity sensor, Item 876--electrical checkout
of the sensor using a conventional voltmeter resulted in
burn-out of the control pot. Any electrical checkout of
the quantity sensor must be done with a standard high
importance digital meter.

Analysis And Correlation Of Test Data

The development Sabatier reactor was extensively tested as dis-
cussed above. Data from this testing was examined and used as a
basis for the correlation of the Sabatier computer program.

Table 18 shows steadystate conversion efficiencies for actual
test results compared to simulated computer model predictions.
These test conversion efficiencies were calculated from gas
chromatograph readings of outlet gas composition, and from flow-
rator measurements. The raw data test summary sheets for each
test condition appear in Appendix B.
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In addition, catalyst bed temperatures and outlet coolant temper-
atures were measured. These appear on the data sheets in Appendix
B. Measured temperatures at the head of the bed, however, do not
reflect actual bed temperatures because of the fin effect of the
thermocouple probe. This onl 3 eftects the first two thermocouples.
Also, coolant temperature measurer .rnts are inherently low because
of thermocouple fin effect, and because the thermocouple is
located several inches downstream of the coolant outlet. It is
estimated that the low flow temperature reading is approximately
708 of the actual and the high flow temperature reading is 848 of
the actual (referenced to ambient). Measured bed temperature
profiles are shown for all steadystate cases in Figures 31 to 51.
Corrected coolant temperatures are also depicted on these figures.

This test data was used to correlate the Sabatier Thermal Model
discussed in the Design section of this report. Simulations of
all the tests described above were analyzed using the correlated
model, with results appearing in Table 18 and Figures 31 to 51.
Simulation reactor temperature profiles reflect the temperature
of the thermocouple probe, so they should match the test data.
Simulation coolant temperatures indicate actual coolant tempera-
tures so they should be compared to corrected test temperatures.

Simulated steadystate conversion efficiencies agree with test
data with deviations of less than 0.18 for most cases. Also
steadystate temperature profiles are in good agreement with test,
except for the very end of the bed in the lower flow conditions.
This is attributed to condensation in the end of the bed. Coolant
and outlet temperatures do not agree very well with test; however,
the thermocouple fin effect and location as noted above on these
temperature measurements should be sufficient to account for
this. Also, the high flow coolant temperature is affected by
condensation in the aft portion of the bed.

Table 19 contains a summary of the average conversion efficiencies
for actual testing compound to the simulated computer model
predictions for the duty cycle of 55 minutes on and 39 minutes
off, which simulates normal light side/dark side operation. The
improved efficiency values shown in parenthesis were obtained
after completion of the test program and after catalyst treatment
to remove additional residual chlorides.
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FIGURE 47
SABATIER STEADY STATE BED TEMPERATURES
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MOALR RATIO - 1.8
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FIGURE 48
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Test Data (0)	 Simulation (—)
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Test Data (0)	 Simulation (6-)
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FIGURE 50
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Test Data (0)	 Simulation (-4
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FIGURE 51
SABATIER STEADY STATE BED TEMPERATURES
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Bed temperature profiles at the end of the shutdown and 25 minutes
into the warm-up are shown in Figures 52 to 63 for several trans-
ient cases. Also, conversion efficiencies as a function of time
into warm-up are presented for these runs. Note that for the 2
and 3 man cases a large dip in performance occurs about 25 minutes
into the warm-up. The cause of the reduced performance can be
seen by superimposing the steadystate profile over the profile at
25minutes into warm-up ( Figures 67 to 69). In the profiles at 25
minutes, the transition from the hot to cold section of the bed
is much faster, so that gas residence time in the 260-316 °C (500-
600°F) area, where final scrubbing occurs, is short. Also notice
that some sections of the bed are warmer at 25 minutes than in
steadystate, contributing to the steeper profile.

Transient cool down computer simulation shows good agreement with
test data as can be seen in plots of reactor profiles at the end
of the cool down period ( Figures 52 0 55, 58, and 61). However,
warm-up is not as well correlated with test as is seen in reactor
temperature profiles and conversion efficiency plots ( Fi-ures 33,
56, 59, and 62). This discrepancy is due to the warm-up anomaly
mentioned above.
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Time Into Warmup =	 0.0 Minutes

(0) Test Data
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FIGURE 52
SABATIER TRANSIENT BED TEMPERATURES
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SABATIER TRANSIENT BED TEMPERATURES
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SUBSYSTEM DELIVERY

The following hardware was shipped under this contract to NASA/
JSC .

Sabatier Package Assembly 	 SVSK 96500
Sabatier Driver Box	 SVSK 97813
Connectors, Electrical (1 each)

>901 - PT06A-12-105
>700 - PT06A-12-105
>701 - PT06A-8-4S
Mating miniature thermocouple connectors (11) (Item 86)

Prior to delivery of this hardware, the Sabatier Package Assembly
was refurbished. This consisted of:

-	 Replacing heater, SVSK 96486 (Item 83)
-	 Replacing overtemperature probe SVSK 96465 (item 85)
-	 Catalyst treatment, to remove additional residual chlorides
-	 Installation of name tags'and component item numbers
-	 Tie down of electrical leads and harnesses.

Reactor cooling air temperature sensors, Items 87-1 and 87-2,
although not on the subsystem parts list, were left installed in
order to facilitate testing at NASA/JSC.

After refurbishment the subsystem was setup and tested to verify
proper function and performance and various failure modes.
Performance was improved as discussed previously. Water was
drained and then the subsystem purged for 24 hours with dry
nitrogen. Inlet and outlet ports were capped and double bagged
and the unit delivered to the shipping department where it was
crated and subsequently delivered to NASA/JSC by a North American
air ride van.
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COORDINATION WITH RLSE

The Sabatier CO Reduction Subsystem schematic is shown in Figure
1. The subsystem closely matches the RLSE program Sabatier CO
Reduction Subsystem and provides the same interfaces, function
and internal componentry to be fully compatible with the overall
RLSE System requirements. The Sabatier package assembly, driver
box, and TIMES controller will fit into the space provided in the
NASA/JSC Advanced ECS laboratory. The TIMES controller and
display is installed in a standard NASA supplied electronic rack
for use in the NASA laboratory. Ten meters of leads wire is
provided by the TIMES program to permit this remote location. A
lead ( 10 meters long) for an external remote discrete shutdown
switch was also provided as part of the Sabatier subsystem harness.

Interfaces for the Sabatier subsystem are as defined in NASA's
RLSE study. A mixture of hydrogen and carbon dioxide is received
from the EDC. A charcoal bed in the Sabatier subsystem will
protect the Sabatier reactor if there are trace amounts of contam-
inant carryover from the EDC or WVE. CO concentrator pressure
is controlled to 1.2 atms ( 3.5 psig) by aressure regulators
contained within the Sabatier reactor system. If the primary
regulator fails closed, a bypass valve ( Item 306-2) will be auto-
matically activated diverting flow to a bypass regulator thus
protecting upstream equipment.

A pump is provided to deliver water to the water management
system at 2 atms ( 30 psis) which is the upper pressure limit
defined by RLSE. The preprototype unit has its own cooling fan,
however, the air cooling jacket at the reactor is designed to
operate at low flow with the pressure drop available from normal
Spacelab rack cooling air. Air cooling is used to simplify inte-
gration of the subsystem, consistent with RLSE guidelines.
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DOCUMENTATION

Table 20 defines the contract documentation required and the
documents submitted in response to the data requirements for this
program test by Hamilton Standard.
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SUPPORT REQUIREMENTS

Below is a list of Government Furnished Property (GFP) made
available by the NASA/JSC in support of this contract. Items not
used were returned to the Government after the preprototype
Sabatier subsystem was :hipped.

Quantity	 Delivered With
Supplied	 Subsystem	 Description

5	 4	 SSP Item 178
CcwAx stible Gas Sensor
SVSK 84456-100 Sensing Assy.
SVSK 84456-200 Monitor Assy.
With Elec Harness

6	 5	 SSP Item 306
Valve, Elec Shutoff, Manual
Override
SVSK 84424-100
With Elec Harness

1	 -	 SSP Item 368
Backpressure regulator Valve
SVSK 84519

5	 4*	 SSP Item 507
Manual Shutoff Valve
SVSK 84530-1

1	 1	 SSP Item 545
Water Pump
SVSK 96329-2

2	 2*	 SSP Item 902
Pressure Transducer
SVSK 86339-3 (Refs
SVSK 84522-3)
With Elec Harness

2	 -	 SSP Item 907
Water Detector Sensor
SVSK 86587
With Elec Harness

1	 1*	 Space Shuttle Assembly

	

(less spares)	 Accumulator Assy.
SV755518-1
With Spare Parts

*Items modified for use in Sabatier subsystem
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QUALITY ASSURANCE

The objective of the Quality Assurance Program was to search out
quality weakness and provide appropriate corrective actions.
Quality assurance considerations were included during the CO
Reduction Subsystem Design, engineering evaluations, procureiient
and fabrication activities. All vendor -supplied items were
checked out and inspected per engineering instructions prior to
assembly into the subsystem. Prir to delivery of the hardware, a
First Article System Inspection ( FASI) was held. The review
committee consisted of senior engineering, reliability and quality
personnel. Only minor quality deficiencies consisting mostly of
electrical wiring harness locations were identified and required
corrections.

127



MAM^I^ONiT^1^A110 om d	 SVHSER 7221
=L^"	REV. "A"

RELIABILITY

The CO Reduction Subsystem, as concepted, has a high inherent
reliability. The Sabatier reactor and the water separator are
passive devices. In the flight configuration, cooling is pro-
vided by a constant supply of avionics cooling air flow. The
addition of a charcoal filter in the process line minimizes the
sensitivity of the reactor to upsets in upstream subsystems.

The water quantity measurement and delivery equipment consists of
a pump and a calibrated accumulator. The cylic operative of the
accumulator is estimated at 1500 cycles per month. This results
in a pump on-time of only 25-50 hours. At this low usage rate,
this equipment would not be considered limited life.

The backpressure regulator is backed up by an in-line shutoff
valve which provides isolation, and automatic switchover to a
second regulator. The automatic switchover function, activated
by an inlet pressure sensor, permits uninterrupted operation and
venting of upstream subsystems.

Equipment safety is enhanced through design simplification, and
automatic failure detection and shutdown. All components which
contain H or CH are of a welded construction and incorporate
static sells. Sifety critical parameters, such as pressure,
temperature, and external gas leakage, have redundant sensing and
shutdown capability.

The Failure Mode and Effects Analysis (FMEA) was completed as a
part of this program and submitted to the NASA/JSC as shown in
Table 20.
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Safety was a prime consideration in design of the CO 2 Reduction
Subsystem because of the presence of hydrogen gas in the subsystem.
During the design of the subsystem safety was enhanced by in-
corporating the following safety features in the hardware and/or
subsystem:

1. Utilization of a catalyst that has a low start temper-
ature and a reaction that is temperature limited regardless
of flow.

2. Incorporates a dedicated overtemperature sensor to
initiate automatic subsystem shutdown.

3. A single failure in one component will not cause suces-
sive failures in other components.

4. All manual valves and manual overrides in electrical
valves are readily accessible from the front face of the
subsystem.

5. The controller provides automatic hands-off operation and
automatically purges with nitrogen the subsystem during
any shutdown.

6. A visual and audio alarm is provided during any abnormal
condition.

7. Four combustible gas detectors are provided in the sub-
system.

S. All interfaces and connectors are clearly labeled.

9. Circuit breakers are incorporated to protect electrical
equipment.

10. in all connectors, the hot connector is a female
socket.

11. Overpressure of the subsystem is presented by design
(reactor is sent straight through tube design), by a
flow limiting orifice in the nitrogen line, by
pressure regulators, and pressure sensors which will
signal the controller to bypass inlet flow or shutoff
nitrogen flow if the pressure level exceeds a predeter-
mined value.
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1.0 INTRODUCTION

Testing for the Preprototype Sabatier Subsystem shall be per-
formed at the component and subsystem levels. Each component
shall be tested as described herein to assure critical perfor-
mance and operational characteristics as required prior to sub-
system testing. Subsystem level testing shall be performed to
verify subsystem design features, startup and shutdown charac-
teristics, operating pressure level capabilities, failure mode
characteristics and parametric Sabatier Reactor and subsystem
performance under steady state, cyclic and transient conditions.

Tables I and II show the specific component tests to be run;
Tables III and IV show specific subsystem tests to be run.

2.0 TEST DESCRIPTIONS

2.1 Examination of Product - Each specified component in Table I
shall e examined to determine that the material and work-
manship requirements have been met and that all external
devices such as flanges, mounting provisions, and connector
locations are as specified.

2.2 Base Point Calibration - Each specified component will be
operated to demonstrate that the unit meets specified func-
tional and baseline performance requirements, including
startup and shutdown.

2.3 Proof Pressure - A proof pressure test will be conducted on
fluid system pressure carrying components and assemblies.
The pressure will be 1.5 times maximum operating pressure
and will be held for a period of five minutes at room tem-
perature. At the conclusion of the proof pressure test, the
components will be examined to verify that no damage or
permanent deformation has occurred.

2.4 Leakage - Fluid system components will be subjected to an
external and an internal leakage test, as applicable.

2.5 Performance - Each component shall be subjected to a perfor-
mance test except where a base point calibration is suffi-
cient prior to subsystem testing. Performance tests are
categorized in four ways:

2.5.1 Operational Check - This test demonstrates that the com-
ponent operates when it is subjected to the appropriate
stimuli. This test is primarily for commercially avail-
able components.

2.5.2 Performance Ma - These are more extensive tests to be
conducted on the reactor and condenser in the subsystem.
These tests are described in more detail in Section 4.0.
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TABLE I TEST SUMMARY

P

TEM
NO.

DESCRIPTION P/N

I SVSK96471-1

EOP

I

BASE
POINT

I	

CAL

PROOF
PRESS

LEAKAGE PERFORM

26 SILENCER X

31 CHARCOAL CANISTER SVSK96470-1 X X X j

41 CHECK VALVE SVSK96466-1 X X OP
42 CHECK VALVE SVSK101124 X X

46 FAN SVSK96462-1 X OP

51 CONDENSER/SEP SVSK96349-1 X X X X

61 ACCUMULATOR SVSK96490-1 X CAL

71 DRIVER BOX SVSK97813 X OP

81 TEMP SENSOR SVSK96465-1 X CAL

£2 TEMP SENSOR SVSK96499-1 X CAL

83 HEATER SVSK96486-1 X X

85 TEMP SENSOR SVSK96465-2 X CAL

91 REACTOR SVSK96482-1 X X X X
178' COMB GAS DETECTOR SVSK84456_1OQ X X CAL

306 ELEC S.O. VALVE SVSK84424-100 X X OP

310 BACK PRESS. REG SVSK84412-1 X X X X

507 MAN S.O. VALVE SVSK84530 - 1 X X X

545 PUMP SVSK863201-2 X X X X

876 QUANT SENSOR SV764179-1 X OP

902 PRESSURE TRANSDUCER SVSK101128 X X X CAI,

907 LIQUID WATER DETECTOR SVSK101129 X X X X

259 ACCUMULATOR SVSK96492 x x X

SUBSYSTEM SVSK96498* X X X X ACCEPT

CODE: OP - OPERATIONAL CHECK
	

*REFERENCE SABATIER PAC
MAP - PERFORM MAP
CAL - CALIBRATION OVER RANGE

ACCEPT - ACCEPTANCE TEST

SOT MAME I

A-3

2



IARY

SVHSER 7196
Revisicin A

KAGE PERFORM POWER
CONSUMPT

CONTINUITY ENDUR FAIL MODE
CHECKOUT

X

X OP

X

OP X

X

CAL

OP X

CAL

CAL

X X

CAL

X

CAL

X OP

X

X

X X X

OP

X CAI,

X

X

X
Mp

ACCEPT X X

SABATIER PACKASE ASSEMBLY SVSK96S^)C

mm)OUT FRAM I



2.5.3 Calibration - Components as ind
calibrate over the operational
are limited to those generating
controller.

SVHSER 7196
Revision A

icated in Table I shall be
range. These components
signals for use in the

2.5.4 Acceptance Tests - This is a series of tests to be conduc-
ted at the su system level and are described in more
detail in Section 5.0.

2.6 Power Consum tion - Electrically operated items will be
cyclecyclel and the power consumption measured.

2.7 Continuity - All specified electrical components will be ex-
amined to assure proper wiring.

2.8 Endurance Testin - Shall be performed as part of subsystem
tests. These tests are described in Section 5.0.

2.9 Failure Mode Identification - The principal failure modes
or each component or assembly will be identified and the
effect determined. Identification of safety hazards will
also be noted. These tests shall be conducted on the con-
troller and the subsystem.

3.0 LABORATORY TEST SYSTEM SCHEMATICS

The tests indicated in Table II will be run with the test rig
shown in Figure 1. The effects of variation in total pressure
and air cooling flow rates on H CO 2 conversion will be deter-
mined with this setup. These tests will establish the cooling
flow rate to be used for all subsequent'reactant process rates.

Figure 2 shows the flow schematic to be employed for measuring
Sabatier reactor cooling flow. The existing test rig will be
modified to accommodate integrated subsystem testing.

Test equipment shall permit testing on a continuous basis over
the full range of reactant compositions and flows currently
anticipated in order to determine the effects of variation in
H /CO molar ratios, reactant flow rates, reactant operating
piessares and gas cooling flow rates on H /CO conversion effi-
ciencies and reactor temperature profiles.	 2

3.1 Reactant Gas Supplies - Certified premixed reactant blends
shal be used for test points 1 through 10 in Table iI and
for test points 12, 15, 17, 21, 24 and 27 in Table III. The
premixed reactant flowmeter shall be calibrated with the
reactant mixtures at the flowmeter pressure to be used
during test runs. The reactant mixtures for the remaining
test points in Tables III and IV shall be established by
metering hydrogen and carbon dioxide individually and mixing
them.
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SABATIER REACTOR AND CONDENSEWEPARATOR

COMPONENT TESTS
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5.0

TEST #
	

ON

9
	

2

H2/CO2 HOLAR RATIO	 1.8

TEST 0 FLO ON
(H

CO2 MAN FLOW

1	 7	 2

3

M3 CYCLIC	 ( 8	 2

TOTAL HOURS	 4

M FLOW
2.6

(2) 1	 2

(2) 2	 2

(2)3	 2

(3) 4 	2	 lc
	

2

(3) 5	 2

(3) 6	 2

+	 12	 +	 4 •
20 hrs total

(1) Plow is 1.71 times steady state flow

(2) Tests 1, 2 and 3 establish effect of air cooling flows thereby permitting
selection of constant air cooling flow for all process reactant flows.

(3) Tests 4, 5, and 6 determines effect of reactor pressure on H2 conversion
efficiency.
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HEATED
G. C. SAMPLE

LINES

LY

.C. SAMPLE

PRODUCT GAS OUTLET

TO VENT 

SABATIER SUBSYSTEM
SVSK96500

REF. SVSK96498
FOR SCHEMATIC

115 VAC

400 HZ

10 PHASE

PRODUCT
WATER
OUTLET

GRADUATED
CYLINDER

TEMPERATUEE
READOUT

FOLDOUT FRAM - ^_

FIGURE 2
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mixture analysis shall
tests. Accuracies

3.2 Laboratorx Gas Analysis - Product gas
be etermined by gas chromatographic
shall be as follow:

Concentration
Range

H2 	0 - 58

CO2	0 - 58

CH 	 0 - 258

Accuracy

+ 0.18

+ 0.18

+ 0.58

4.0 SABATIER REACTOR AND CONDENSER/SEPARATOR TESTS

The test sequence in Table II shall be performed on the Reactor-
Condenser group in the rig setup shown in Figure 1. Reactor
coolant air flows shall be measured as shown in Figure 2.

5.0 SUBSYSTEM TESTING

Subsequent to component testing, the subsystem shall be operated
at baseline conditions both at the beginning and at the end of the
test program to determine the effect of operating time on system
performance. The contractor shall demonstrate the Sabatier sub-
system capability of satisfying an off -nominal requirement by
operating at the one-man rate for two days. A 120 hour continuous
endurance test shall also be conducted. System power and H /CO2
conversion efficiency shall be recorded during this operation.
An acceptance teat shall thon he	 red and witnessed by the
NASA technical monitor. This testing shall include a subsystem
shutdown after the off-nominal operation and system startup and
operation at baseline conditions. Cyclic operational performance
shall also be demonstrated. The parametric tests shall include
conditions comparable to 1, 2, and 3 man loadings. In addition,
off-design testing shall he conducted which exhibits H 2 conversion
efficiencies of approximately 908 and 808.

The subsystem test program shall be conducted as shown in Figure 1
and shall include a minimum of 304 hours of reactant flow in the
conduct of parametric, endurance, and acceptance testing as de-
fined in Tables III and IV.

6.0 TEST REPORTS

The data from each test will he recorded on Hamilton Standard Loy
Sheets. Th i -; 1.1 r. -t i 1 1 o,iii-i ist of the rig operational parametris
As w. -11 ,j5	 r',-;:alts of gas, chemical and physical analysis
performed. The performance data calculated from each test will
be plotted and compared with performance pre,l io ited by computer
models. A test report shall be prepared and included in the final
report.

A-7
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FIGURE 2
REACTOR COOLING AIR FLOW TEST SETUP
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